03 al 06 de octubre de 2023 - Buenos Aires, Argentina

XXIV Congreso Argentino de Bioingeniería XIII Jornadas de Ingeniería Clínica

Analysis of Mammography Machines Needs in Mexico and Uruguay

Oscar F. Cossio-Ortega^{1,2}, Franco Simini², Fabiola M. Martínez-Licona¹.

- ¹Universidad Autónoma Metropolitana Iztapalapa.
 ²Núcleo de Ingeniería Biomédica, Universidad de la República.

INTRODUCCIÓN

La mortalidad por cáncer está ligada al desarrollo socioeconómico de la comunidad. En países en desarrollo, las mujeres con cáncer de mama tienen un 17% más de riesgo de fallecer que en países desarrollados. En América Latina, el cáncer de mama es el más frecuente entre las mujeres. Los programas de detección temprana con mamografías son clave para reducir la carga de esta enfermedad, centrados en mujeres de 40 a 69 años con exámenes cada dos años. El desafío en la región es implementar políticas de salud y asignación de recursos para garantizar el acceso universal. Nuestro objetivo es analizar la infraestructura de mamógrafos en ambos países, identificando barreras tecnológicas que limitan el acceso a estos servicios de detección de cáncer de mama.

MATERIALES Y MÉTODOS

Como base para el estudio se decidió usar los departamentos con los mayores rezagos económicos y sociales de ambos países, según los institutos nacionales de estadística y ministerios de salud respectivos. Usamos el análisis jeráriquico de Saaty [5], que consiste en determinar el peso de las variables que eúristicamente consideramos determinantes en la mortalidad del CM. Los pesos $K_1 \dots K_5$ son obtenidos por el proceso de jerarquía analítica de Saaty. El índice de prioridad PI_{MM} en el ámbito de un país para la adquisición de MM está dado por:

$$PI_{MM} = K_1I_{MM} + K_2TP1_{MM} + K_3TP2_{MM} + K_4EP1_{MM} + K_5EP2_{MM}$$

Donde los indicadores de I_{MM} infraestructura, $TP1_{MM}$ población objetivo, $TP2_{MM}$ educación, $EP1_{MM}$ mortalidad y $EP2_{MM}$ incidencia por CM.

RESULTADOS

Los pesos obtenidos están indicados en la tabla 1. El índice de prioridad en cada departamento está dado en la tabla 2. La figura 1 muestra los estados (Mx) o departamentos (Uy) con mayor rezago económico con un color distintivo de cada región.

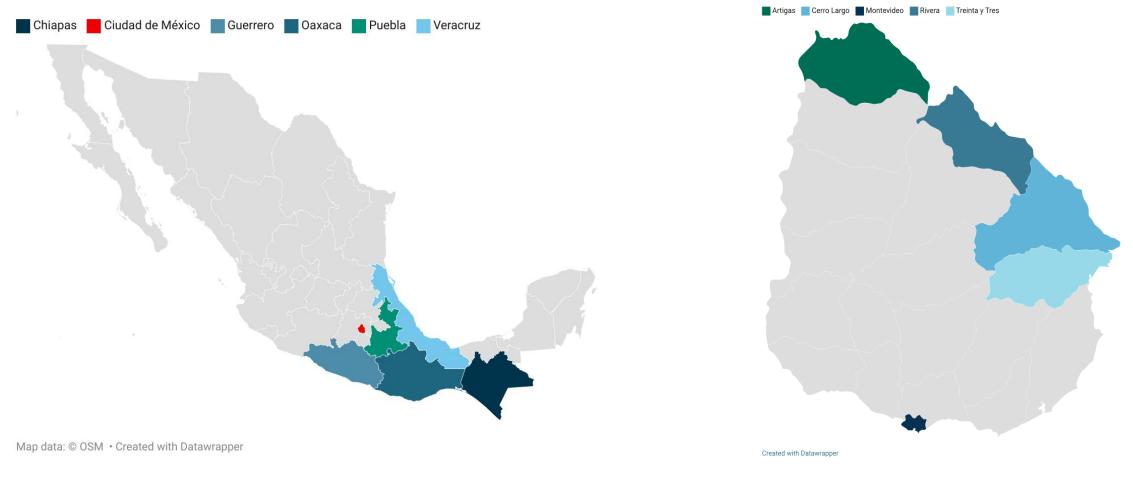


Figura 1. Estados de Mx y departamentos de Uy más rezagados, un color c/u.

RESULTADOS

Tabla 1. Pesos de variables en el modelo

Variable	Peso K _i	Categoria
Ubicación de MM	0.384	Infraestructura (I _{MM})
Número de MM	0.173	Infraestructura (I _{MM})
Nivel educativo	0.191	Población Objetivo (TP1 _{MM})
Población fem +18	0.147	Población Objetivo (TP2 _{MM})
Mortalidad CM	0.072	Epidemiológico (EP1 _{MM})
Incidencia CM	0.033	Epidemiológico (EP2 _{MM})

Tabla 3. Indicadores infraestructura, población, epidemiológico.

Uruguay	I_{MM}	$TP1_{MM}$	$TP2_{MM}$	EP1 _{MM}	EP2 _{MM}	PI_{MM}
Cerro Largo	0.013	0.026	0.038	0.468	0.223	0.0590
Rivera	0.038	0.030	0.054	0.506	0.241	0.0801
Artigas	0.025	0.021	0.017	0.413	0.168	0.0557
Treinta y Tres	0.013	0.015	0.014	0.509	0.138	0.0529
Montevideo	0.363	0.420	0.234	0.454	6.131	0.5434
México	I_{MM}	TP1 _{MM}	TP2 _{MM}	EP1 _{MM}	EP2 _{MM}	PI_{MM}
México Chiapas	<i>I_{MM}</i> 0.039	<i>TP</i> 1 _{<i>MM</i>} 0.035	<i>TP2_{MM}</i> 0.088	<i>EP</i> 1 _{<i>MM</i>} 0.399	<i>EP2_{MM}</i> 0.081	<i>PI_{MM}</i> 0.0751
Chiapas	0.039	0.035	0.088	0.399	0.081	0.0751
Chiapas Oaxaca	0.039 0.013	0.035 0.032	0.088	0.399 0.410	0.081 0.252	0.0751 0.0626

CONCLUSIONES

El método fue aplicado sin dificultades dando valores plausibles. En Uruguay el PI_{MM} oscila entre 0.053 y 0.54 mientras que en México se encuentra entre 0.06 y 0.11. En ambos países una región se destaca por su PI_{MM} muy superior a las demás regiones: Veracruz ($PI_{MM} = 0.11$) y Montevideo (PI_{MM} =0.54). De los conjuntos de 5 regiones de ambos países, Veracruz y Montevideo son las que albergan mayor población de mujeres entre 40 y 69 años. El estudio presenta cómo la alta prevalencia de un problema global está relacionada con la equidad en el acceso a la salud en las regiones analizadas, destacando la importancia de una distribución más equitativa de recursos para abordar los problemas de salud. Este enfoque en la planificación de la incorporación de mamógrafos es valioso para optimizar programas y políticas de salud mediante el uso eficiente de recursos disponibles.

REFERENCIAS

- 1. World Health Organization WHO. (2020). Global health estimates: Leading causes of death.
- 2. Sung, H.: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, (2021). DOI: 10.3322/caac.21660
- 3. Icanervilia, A.V.: Economic evaluations of mammography to screen for breast cancer in low- and middle-income countries: A systematic review. (2022). DOI:10.7189%2Fjogh.12.04048
- 4. Agudelo,M: Sociodemographic determinants of access to breast cancer screening in Mexico: A review of national surveys.(2013)
- 5. Saaty T (1980) The Analytic Hierarchy Process. McGraw-Hill (1980)

