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A B S T R A C T   

Physiological muscle disorders resulting from various diseases, such as sarcopenia or strokes, affect millions of 
people each year according to the American Heart Association. Medical examinations for assessing muscle health 
are difficult to administer and lack standardization. Surface electromyography (sEMG) signals have found a wide 
variety of applications; in this work, we present a simple reliable framework for hand grip force estimation using 
them. We hope that this work will lay the groundwork for applying hand grip force estimation as a method for 
standardized and reliable muscle health assessment. Seven healthy male subjects were voluntarily recruited and 
sEMG signals were collected from eight electrodes uniformly distributed around the forearm. A logarithmic 
function can describe the EMG–force relationship. We propose a novel method for generating functional 
potential-based inverse EMG images of the forearm. The hand grip force can be estimated from the reconstructed 
images. Using a simple lightweight system and simple algorithmic techniques we can attain a mean correlation 
coefficient of 0.95 ± 0.01 and mean RMSE of 0.18 ± 0.08N. The results are presented for subject-dependent tests, 
the generalizability of the method is still to be researched over a larger cohort of subjects, including rehabili-
tation patients.   

1. Introduction 

Degradation or loss of muscle function affects millions of people 
worldwide. Loss of hand-grasp abilities is one of the effects of neuro-
logical accidents (such as strokes). According to the World Health Or-
ganization (WHO), post-stroke hemiplegia affects about 15 million 
people annually around the world [1]. About 30% of stroke victims are 
unable to regain full control of their extremities to the extent they had 
before the stroke [1]. Even more, severely conservative estimates show 
that sarcopenia, a condition characterized by loss of skeletal muscle 
mass and function, affects more than fifty million people today and will 
affect more than two hundred million in the next forty years according 
to the American Health Association [2]. In the US alone the cost of these 
conditions is estimated to be approximately seventy billion dollars per 
year [2,3]. 

Muscle force estimation could have significant implication for mus-
cle health assessment [4,5]. Improved evaluation of muscle force may be 
used to diagnose muscular disorders, to decide if a patient qualifies for a 
particular treatment, or to track the effectiveness of a treatment [6,7,4]. 
Manual muscle testing (MMT) is one of the predominant methods for 
assessing muscle health [8]. There is a strong need to reach consensus on 

definitions for standardized tests of muscle health and methods to easily 
and rapidly assess muscle health with minimal patient burden are 
needed.[9]. There is increasing demand for objectivity regarding muscle 
testing and the addition of a simple quantitative measurement protocol 
as a complement to MMT could be highly advantageous [8]. 

Electromyography (EMG) is an electrodiagnostic measurement 
technique for measuring the electrical activity produced by skeletal 
muscles [10]. An EMG signal is the direct reflection of the action po-
tentials generated in a neuro-muscle junction. For this reason, it is 
widely accepted that EMG signals can be used as a predictor of muscle 
force [11,12]. One area that has not been deeply explored is the possi-
bility of using the signal to assess muscle health and in particular, re-
covery stages in patients following neurological accidents involving 
functionality of the extremities. The EMG may be measured non- 
invasively by placing electrodes at the skin’s surface which is usually 
desirable. However, sEMG signals acquire noise while traveling along 
the muscle through tissues and electrodes may collect signals from 
different motor units simultaneously. We believe that these factors have 
inhibited the development of robust systems that can be used in real- 
world settings. 

Potential-Based Inverse Imaging refers to a variety of methods of 
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tissue imaging using non-invasive measurements of bio-electric poten-
tials [13]. Potential-Based Inverse Imaging has been applied in a variety 
of research settings such as electromyometrial imaging (EMMI) [14], for 
predicting preterm birth using EMG signals [13], for EMG source 
localization [15], for pulmonary vein isolation imaging and [16], for the 
characterization of myocardial infarction using ECG signals [17]. 

The most common and widely used form of Potential-Based Inverse 
Imaging is Electrical Impedance Tomography (EIT) [18]. EIT has been 
used for monitoring ventilation distribution, assessment of lung over-
distension and collapse, and pneumothorax detection [19]. Time dif-
ference EIT (td-EIT) refers to EIT measurements between two or more 
physiological states, e.g. between inspiration and expiration. One 
benefit of td-EIT is that inaccuracies resulting from inter-individual 
anatomies, such as insufficient skin contact of surface electrodes, can 
be ignored because most artifacts will eliminate themselves due to 
simple image subtraction. As of today, the greatest progress of EIT 
research has been achieved with td-EIT [20,21,19]. 

A typical EIT procedure is performed by placing N electrodes encir-
cling the tissue of interest. Current is passed between each pair of 
electrodes while measuring the voltages induced on the other electrodes. 
From these measurements, an inverse calculation is performed to 
determine changes in conductivity across the tissue of interest. These 
differences in conductivity can be displayed as shades of gray in an 
image [22]. 

Mathematically, the problem of recovering conductivity from sur-
face measurements of current and potential is a non-linear inverse 
problem and is severely ill-posed. The mathematical formulation of the 
problem is due to Alberto Calder?n [23], and is called ”Calder?n’s in-
verse problem” or the ”Calder?n problem”. EIT is of particular interest to 
us in this research due to the physical similarities between the EIT 
measurement protocol and the eight-channel measurement setup used in 
this research. 

One of the force-estimation approaches that have gained some 
popularity utilizes high-density electrode arrays. Staudenmann et al. 
(2006) [24] showed that force estimation based on EMG signals 
collected from high-density electrode arrays offers significant error 
reduction relative to force estimation from signals collected from indi-
vidual electrodes. Based on this research Huang et al. (2017) [25] 
demonstrated a novel algorithm, based on non-negative matrix factor-
ization, for isometric force estimation. The EMG envelope matrix was 
factorized into a matrix of basis vectors with each column representing 
an activation pattern and a matrix of time-varying coefficients. Although 
high-density arrays have been shown to lead to improved force esti-
mation, they are not ideal [26]. They lead to redundancy since many of 
the electrodes capture similar information, they lead to increased 
complexity in signal processing, and they increase the cost of the system. 

The goal of this research is to use a low-cost eight-channel EMG 
measurement system to provide a simple algorithmic approach for ac-
curate force estimation which can lead to clinical methods that could 
complement MMT in determining muscle health. 

2. Materials and methods 

2.1. The measurement system 

The EMG measurement system is an affordable lightweight multi- 
channel EMG and hand grip-force measurement system developed at 
our laboratory. The EMG signals are measured using eight Myoware 
EMG SEN-13723 sensors placed around the forearm with respect to a 
common reference electrode, placed distal to the other electrodes on the 
forearm. The EMG DC offset is + Vs

2 . Each sensor is connected to a Power 
supply of +5V and a ground voltage of 0V. The associated hand-grip 
force is measured using a force-sensing resistor (FSR) which is placed 
on a DIGI-FLEX such that the FSR is compressed in tandem with the hand 
exerciser. The system collects nine analog signals which are converted to 

digital signals using a 10-bit analog-to-digital converter connected to a 
Raspberry Pi. The signals are sampled at 1980Hz, amplified, and saved, 
up to the point of maximal voluntary contraction, for off-line analysis 
and signal processing. All of the routines, processes, and analyses were 
performed using python programs written in our lab. 

2.2. Informed consent 

Seven healthy male subjects were voluntarily recruited in this study. 
Each subject signed the written informed consent documents before 
participating in the experiments. All the subjects were healthy and none 
of them reported any neurological disorders or musculoskeletal prob-
lems. The subjects were aged between 22 and 42 years old. The subject’s 
forearms ranged from 27 to 30 cm in length and 22 to 30 cm in cir-
cumfrence. The average participant age is 29 years old. Ethical approval 
was obtained from the Research Ethics Committee of the Universidad de 
la República Hospital (Hospital de Clínicas), Montevideo, Uruguay, num-
ber 032018. 

2.3. Measurement protocol 

The primary muscles under observation in this study are the bra-
chioradialis, flexor carpi radialis, flexor carpi ulnaris. Eight MyoWare 
Muscle Sensors placed radially around the forearm collect EMG signals 
from the primary muscles, as well as several additional secondary 
muscles, palmaris longus, flexor digitorium superficialis, extensor carpi 
ulnaris, extensor digiti minimi, extensor digitorium. Table 1 enumerates 
the electrodes and the muscles they roughly correspond to. It is noted 
that, as is always the case when measuring EMG signals, there may be 
significant crosstalk between the muscles and each electrode doesn’t 
strictly correspond only to the muscle listed. The hand-grip force is 
measured on a force-sensing resistor (FSR) which is coupled to a Digi-
Flex hand exerciser. The FSR is placed so that its active surface is 
compressed in tandem with the hand exerciser. The subject’s hand is 
held in a relaxed position throughout the compression, which takes 
approximately 3-7 s. The electrode configuration was done following the 
procedure described by Baranski and Kozupa (2014) [27]. Figs. 1a and 
1b shows the experimental setup and electrode placement used in this 
study. Subjects were instructed to sit comfortably with their handheld in 
a relaxed position while performing a compression monotonically 
increasing force. Subjects performed twenty trials with rest periods to 
offset muscle fatigue. 

2.4. Regression procedure 

The subject that participated in this study were instructed to increase 
the strength of their grip throughout the compression. An analysis of the 
force profiles revealed that force signals appeared logarithmic and 
consequently a logarithmic relationship is assumed between features of 
the eight-channel EMG signal and the measured force. Under this 
assumption, the force estimation problem can be formulated as a 
regression problem the measured force is estimated using the eight- 
element vector of features extracted from each channel of the 
measured EMG signal. 

Table 1 
The subject muscles and their corresponding electrodes.  

Electrode Number Muscle Name Color 

1 Palmaris Longus Blue 
2 Flexor Digitorium Superficialis Green 
3 Extensor Carpi Ulnaris Purple 
4 Extensor Digiti Minimi Orange 
5 Extensor Digitorium Red 
6 Brachoradialis Brown 
7 Flexor Carpi Radialis Black 
8 Flexor Carpi Ulnaris Grey  
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The accepted method of feature extraction for EMG signals is to 
segment the signal into overlapping windows and extract a single global 
feature from each window. When determining the window size, a trade- 
off must be made between accuracy and temporal resolution. Using 
windows smaller than 0.2 s generally requires a postprocessing mech-
anism to make accurate classifications. Larger window sizes are known 
to increase classification accuracy [26]. To ensure that our windows 
contain sufficient information for accurate estimation, we chose a win-
dow size of 0.25 s with an overlap of 0.125 s. The mean-absolute voltage 
(MAV) Eq. 1 was chosen as a global window feature as it leads to high 
EMG-based classification accuracy at a low computational cost [28]. 4th 
order Butterworth filter with a passband of 20 − 150Hz is applied to each 
of the eight channels. A brute force search determined that this was the 
optimal passband, which is in agreement with De Luca et al. (2002) [29] 
who stated that dominant EMG activity is known to occur in this range. 
The force signal is filtered by a moving average filter with a kernel 
length of 500 samples (0.25 s). Samples recorded after the point of 
maximum voluntary contraction (MVC) were not included in the 
analysis. 

MAV =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
⃒
xi

⃒
⃒
⃒
⃒
⃒

(1) 

The features are normalized following standard practice. We chose 
min–max normalization Eq. 2 to normalize the MAV voltage. Remem-
bering that the logarithm of the normalized MAV will be calculated, we 
add 1 so that the predicted force is never negative. The signals are 
windowed and the normalized MAV is calculated in each window for 
each of the eight channels. The EMG feature vector V→ is fit to a loga-
rithmic function Eq. 4. Eq. 3 shows the final feature vector that is 
calculated in each window for each of the eight channels. The weight 
vector W→ are the parameters of the model which transform the feature 
vector into the estimated force. W→ is computed using an ordinary least 
squares regression. 

X =
X − Xmin

Xmax − Xmin
(2)  

V→= log
(

MAV̅̅̅→
+ 1→

)
=

[
log

(
MAV1 + 1

)
,…log

(
MAV8 + 1

)]
(3)  

F = W→⋅ V→
T

W→=
[
w1,w2,…w8

] (4)  

2.5. Image reconstruction 

EIT uses the voltage difference between an electrode and all other 
electrodes to generate the image. Inspired by this, we similarly calculate, 
at each time step, the voltage difference between a given electrode and 
the other electrodes; this is repeated around all eight electrodes. This 
process yields an 8 × 8 matrix V which is shown by Eq. 5. The matrix V is 
then flattened into a 64 × 1 array of voltage differences for each segment 
of the EMG signals. We refer to this as the pairwise voltage difference 

vector. We used the open-source EIT framework EIDORS [30] to solve 
the inverse conductivity problem. In EIT the surface voltage measure-
ments would be used to solve the inverse EIT problem [23]. We used the 
pairwise voltage vectors in place of these. This procedure generates an 
image that might represent functional imaging showing the activation of 
the subject muscles. This method utilizes the EIT reconstruction algo-
rithm as the basis for a form of PIE imaging. 

vij = Vi − Vj i, j ∈
[
1, 8

]
(5)  

2.6. Vision transformers 

Transformers are a deep learning model that adopts the mechanism 
of attention, differentially weighing the significance of each part of the 
input data. Transformers are designed for sequence-to-sequence tasks 
such as translation and text summarization. They are used primarily in 
the field of natural language processing (NLP) and have recently been 
adapted and implemented for Computer Vision problems [31–33]. 

In computer vision tasks an image is tokenized into small grids of 
pixels typically 8 × 8 or 16× 16. The patches’ positions are encoded, to 
retain information regarding the proximity of one patch to another, and 
then passed into the transformer network. In this research, we used a 
Vision Transformer (ViT) network implemented in the PyTorch frame-
work [34]. An image is split into fixed-size patches. Each patch is line-
arly and positionally embedded. The resultant sequence of vectors is fed 
to a standard Transformer encoder [35]. To use this model for regression 
instead of classification we use the standard approach of removing the 
classification layer. An overview of the model is depicted in Fig. 2 
reproduced from [36] (Apache-2.0 License). In the original work, a 
patch size of 16 × 16 pixels was used. Our images are 64 × 64 pixels 
which are significantly smaller. Therefore we used a patch size of 4 × 4 
pixels. All the signals were randomly split between a training and vali-
dation set. The split was performed such that each of the twenty signals 
collected from each subject was split 70%-30% so that is each subject 
had fourteen signals used for training and six signals used for validation. 

3. Results 

3.1. Logarithmic model 

The EMG signals from each subject were independently fitted to the 
logarithmic model given in Eq. 4, mean correlation coefficients and root- 
mean-square errors (RMSE) are calculated yielding a mean correlation 
coefficient of 0.95 ± 0.04 and mean RMSE of 0.18 ± 0.12N. Table 2 
shows the mean correlation coefficients and root-mean-square errors for 
each subject. Fig. 3 shows an example of the logarithmic model applied 
to a compression. 

3.2. Potential based inverse electromyography imaging 

3.2.1. Image reconstruction 
The raw EMG signals were segmented into 0.25-s segments and the 

MAV was extracted. The pairwise voltage difference is calculated 

Fig. 1. Experimental setup and electrode placement used in this study.  
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according to the procedure described in Section 2.5. The compression is 
now represented by a series of tomographic images. The first image in 
the series is subtracted from subsequent frames so that the images reflect 
evolution over time. Fig. 4 shows the reconstructed functional EMG 
images. 

3.2.2. Image analysis 
The value of the brightest pixel on the reconstructed image (before 

color-mapping) is extracted and fitted to the logarithmic model given in 
Eq. 4. Mean correlation coefficients and root-mean-square errors 
(RMSE) are calculated yielding a mean correlation coefficient of 0.91 ±

0.06 and mean RMSE of 0.23 ± 0.12N. Table 3 compares the mean 
correlation coefficients and root-mean-square errors obtained for each 
subject. Fig. 5 shows an example of the logarithmic model applied to the 
features extracted to the images generated from a compression. 

3.3. Vision transformers 

Table 4 shows the mean correlation coefficients and root-mean- 
square error (RMSE) for each of the subject. Mean correlation co-
efficients and root-mean-square errors (RMSE) are calculated yielding a 
mean correlation coefficient of 0.95 ± 0.03 and mean RMSE of 
0.27 ± 0.07N. Figs. 6 shows an example of the ViT model applied to a 
compression. 

4. Discussion 

Muscle force is often used as a proxy for muscle health and is highly 
correlated to it. We suggest that EMG-based analyses may have many 
positive implications for muscle health assessment and may provide a 
framework for standardized, quantitative muscle health assessments. In 
this research, we explore the feasibility of using EMG-based analyses to 
complement MMT procedures by attempting to model the muscle force 
using the EMG signal and attempting to estimate the muscle force using 
information extracted from the EMG signal. 

We present two distinct methods for modeling the relationship be-
tween the muscle force and the associated eight-channel EMG signal. In 
the first method, we showed that the logarithm of the MAV feature 
vector of a windowed EMG signal is highly correlated to the mean force. 
Using this method we obtained a mean correlation coefficient of 0.95 ±

0.04 and mean RMSE of 0.18 ± 0.12N. 
The second method is based on the similarity between our experi-

mental setup and the EIT procedure. Noting this similarity we demon-
strated a novel method of EMG-based image reconstruction using the 
EIT reconstruction algorithm, i.e Calder?n’s Problem. We showed that 
the logarithm of certain images features are also highly correlated to the 
mean force. Using this method we obtained a mean correlation coeffi-
cient of 0.91 ± 0.06 and mean RMSE of 0.23 ± 0.12N. We believe that 
this indicates that the image represents the degree of muscle activation 

Fig. 2. Overview of the ViT model. Reproduced from [36] under the Apache 2.0 license.  

Table 2 
Mean correlation coefficients and RMSE for each subject, logarithmic model.   

Logarithmic Model 

Subject Mean R2  Mean RMSE 

1 0.97 0.21 
2 0.96 0.14 
3 0.94 0.24 
4 0.96 0.08 
5 0.94 0.15 
6 0.95 0.13 
7 0.97 0.31 

All 0.95 0.18  

Fig. 3. An example of the force estimated over the course of a single 
compression using the logarithmic model Subject 4. 
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Fig. 4. Functional EMG images generated from the raw signals, Subject 1.  

Table 3 
Mean correlation coefficients and RMSE for each subject, using logarithmic 
model with image features.   

Logarithmic Model 

Subject Mean R2  Mean RMSE 

1 0.95 0.26 
2 0.87 0.25 
3 0.90 0.29 
4 0.89 0.12 
5 0.93 0.17 
6 0.87 0.20 
7 0.95 0.34 

All 0.91 0.23  

Fig. 5. An example of the force estimated over the course of a single 
compression using the reconstructed images Subject 4. 

Table 4 
Mean correlation coefficients and RMSE for each subject, ViT model.   

Logarithmic Model 

Subject Mean R2  Mean RMSE 

1 0.97 0.29 
2 0.91 0.32 
3 0.94 0.31 
4 0.93 0.18 
5 0.95 0.19 
6 0.95 0.20 
7 0.97 0.37 

All 0.93 0.23  

Fig. 6. An example of the force estimated over the course of a single 
compression using the ViT model Subject 4. 
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in some sense. Hypothesis testing showed that the mean correlation 
coefficients of the image-based method are significantly higher than 
those obtained using in MAV method. 

Finally, a ViT network was trained to estimate the force using the 
reconstructed images. Hypothesis testing showed the correlation co-
efficients obtained using the reconstructed images were significantly 
higher than those obtained when using the ViT network to estimate. 
However, the difference could not be shown to be significant when 
assuming a difference of 4% or greater. We believe that using a ViT 
network to estimate the force leads to sufficiently accurate force 
estimations. 

In their work Huang et al. (2017) [25] presented an algorithm iso-
metric force estimation. Their algorithm uses non-negative matrix 
factorization-based methods to extract activation signals which are used 
to fit a second-order polynomial. Using this method they achieved a 
mean correlation coefficient of 0.91 and mean RMSE of 0.23 on a cohort 
of N = 12 participants. We note that these results were obtained using 
EMG signal measured from a high-density array containing one hundred 
and twenty-eight electrodes. Comparatively, we used eight electrodes 
which significantly reduces the cost and complexity of our setup. 

Similarly Clancy and Hogan (1997) [37] used a third-order poly-
nomial to estimate torque of the elbow flexor–extensor. The EMG signals 
were collected using five electrodes placed on the elbow. They reported 
a standard error of approximately 3% on a cohort of N = 3 participants. 
Our standard error was approximately 0.3% from both the MAV and 
EMG-image-based models. 

It must be noted that the results presented from the two logarithmic 
models are subject-dependent and, thus, cannot indicate that a specific 
set of model parameters generalizes to all subjects. Yet, the results of the 
ViT experiments conversely are reported on hold-out validation set. 
Nevertheless, the ultimate goal of this research is to obtain a general 
functional assessment of the EMG signals of the forearm, as opposed to 
an algorithm or device that must generalize to all users. The preliminary 
results presented here indicate that the logarithmic model is an appro-
priate choice for modeling the EMG–force relationship. Due to the small 
number of participants, one can argue that these results require further 
research to be statistically significant. Thus, a larger cohort of partici-
pants, including rehabilitation patients, is required to validate these 
discoveries as well as test the generalizability of the model. 

Several works discuss image reconstruction using surface electrode 
measurements. Xi et al. (2021) used EMG signals for predicting preterm 
birth using EMG signals [13]. Van den Doel (2011) [15] performed 
source localization using EMG signals. Neither of these works nor other 
of this kind is concerned with force estimation from the reconstructed 
images and as such, we cannot compare this aspect of our work to others. 
To the best of our knowledge, this method is completely novel. Though 
we note that we rather na?vely made use of the EIT reconstruction al-
gorithm. We believe that a more mathematically appropriate approach 
may provide further advantages. 

5. Conclusions 

The logarithmic model can accurately model the EMG-hand grip 
force relation under isometric contraction with monotonically 
increasing force. The logarithmic model is robust both to noise and to 
signal features. Notably, the logarithmic function works well with 
various choices of EMG descriptors, and transformations. We showed 
that we can reconstruct visually and quantitatively meaningful images 
from which the force can be estimated. We note that this significant 
result is obtained using a relatively na?ve reconstruction algorithm. We 
believe that a more mathematically appropriate approach, e.g source 
localization, may provide further advantages and further research 
should explore this avenue. 

The ultimate aim of this research is to lay the groundwork for new 
clinical methods, which could complement MMT in determining muscle 
health using functional images. To that end, we note that this research 

represents a kind of baseline for how these approaches work for subjects 
with healthy muscles. Future research should validate these results on a 
wider scale before exploring how these relationships and approaches 
may change for subjects suffering from muscle disorders. Since muscle 
disorders affect approximately seven million people each year in the US 
alone. We believe that resolving the open questions in this work could 
complement existing clinical methods and improve the quality of life 
and care of rehabilitation patients. 
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