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Abstract. This work describes the theoretical basis of an electrical impedance tomography 

imaging system based on numerical analysis of the step response. Its novelty relies on the use 

of time domain for rendering the tomographic images. Following the injection of a Heaviside-

step current through two electrodes, the voltage-response is measured on all couple of 

electrodes according to the neighbouring strategy; this process is repeated on every pair of 

consecutive electrodes. Based on the measurements, a tomographic image is reconstructed 

using the Gauss-Newton-Raphson algorithm. We tested the technique by simulating two 

representative circuits: one symmetrical pseudo-isotropic and one pseudo-anisotropic in AC, 

while both pseudo-isotropic at DC. The time-domain reconstructed images show the second 

network's pseudo-anisotropy while allowing the system to show its tendency to pseudo-

isotropy when the time elapses towards DC-steady-state. This novel technique for 

reconstructing electrical impedance tomographic images may shed new light on sensing slight 

differences in tissues while being fast and low-cost. 

1.  Introduction 

Electrical impedance measurements can characterize various living tissue (in-vivo and in-vitro), 

biological components, and suspensions. Within limits regarding bioelectrical impedance and 

frequency, living tissues and biological components can be considered linear and time-invariant (LTI) 

systems of lumped elements. As research progresses, a great variety of applications will be developed 

based on bioimpedance and its monitoring, due to its lack of adverse effects and low cost. As a 

reasonable alternative to costly and hazardous procedures, such as nuclear medicine, electrical 

bioimpedance will fulfill clinical measurement and monitoring necessities [1]. One such clinical 

desideratum is the continuous edema-extent monitoring by electrical impedance tomography (EIT) of 

intensive care patients [2, 3]. 

Although computing power is a decreasing limitation as quicker electronic components become 

available, presently the image reconstruction must be performed in-toto before any tomographic result 

can be shown. Placement of the electrodes strap around the patient's thorax needs a quick feedback to 

guide the maneuver, a feedback that could consist of a tomographic slice of increasing definition as 

time passes. This incremental tomographic reconstruction is not possible with present algorithms [4]. 

We have therefore a clear motivation to look for a method that would give a fast preliminary 

tomographic reconstruction.  
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The step-response method, used for the analysis and characterization of LTI systems has found use 

in many control theory applications [5]. Being a fast method for systems analysis, we set ourselves the 

goal to explore its use for EIT image reconstruction. While classic frequency response analyses require 

several full periods of sinusoidal signals to be injected into the system for each frequency of interest, 

the step-response signal already carries the system's spectral information in a single sweep [5,6]. The 

extension in time of the Heaviside step will determine the lowest frequency analyzed by the method. 

Step-response analysis is much less time-consuming than frequency response analysis [7]. In addition, 

the step-response analysis seems to fulfill our goal of immediate coarse result and finer result later. 

However, digital step-response analyses are much more susceptible to system-intrinsic non-idealities 

[7,8]. Fitting the objective sampled signal to well-known analytical expressions may help to override 

such drawbacks [9,10]. 

Among the accepted analytical models of electrical impedance, we find Debye (for non-DC-

conducting materials) and Lapicque and Cole (for DC-conducting materials) [9,10]. In 2017, David et 

al. [11] demonstrated that using a finite combination of different Debye and Lapicque models could 

fully describe the electrical bioimpedance of Red Blood Cells suspensions. 

A recent work by Zhang et al., from 2020 [12], presented a novel method for estimating the full 

Cole impedance model by analyzing the impedance response to a DC-biased sinusoidal excitation. 

This method is the first able to estimate the full Cole spectral information from a signal combining a 

single frequency and a DC step. 

Our work focuses on using the voltage obtained as a response to a step excitation, without 

extracting the full impedance model in Laplace domain. In this paper, we propose to harness the 

versatility of the analysis of the step-response towards developing a fast and reliable EIT system able 

to perform in the time domain. 

2.  Analytical methods and approach 

2.1.  Continuous-time analysis 

The simplest electric circuit representing impedance analysis using step-response is a step current 

source connected to the impedance-under-test, and the voltage that drops is measured. In this 

approach, we neglect the parasitic effects of the cables and connectors. Those effects need to be 

corrected off-line after proper calibration with a known load. 

Measuring the output voltage generated on the impedance allows studying the mathematical 

connection between the impedance and the current step. Since the whole system (including the 

impedance) is LTI, the expression of the output voltage is a convolution of the time-domain 

impedance function z(t) (defined as the inverse Laplace transform of the impedance in the frequency 

domain) with the step current. 
𝑖(𝑡) = 𝐼0 ⋅ 𝑢(𝑡)

𝑉𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒(𝑡) = 𝑧 ∗ 𝑖(𝑡)
      (1) 

where I0 is the current intensity after the step, u(t) is the Heaviside function in time, and * is the 

convolution operator. 

Naturally, the sampled voltage on the impedance will carry noise resulting from electromagnetic 

interference, jitter of the sampler, quantization noise, and other sources. Hence, fitting the sampled 

voltage to known analytical expressions (see Section 2.3) will render cleaner signals to be used for the 

tomographic reconstruction (see Section 2.4). 

2.2.  Debye, Lapicque, and Cole impedance models 

Two basic impedance models are mainly accepted: Lapicque and Debye [9,13]. The following 

equation shows their expressions in the Laplace domain. Both models present a resistor (Rd) and a 

capacitor (Cd) in parallel, connected in series to a resistor Ri (Lapicque) or a capacitor Ci (Debye). 

Equation (2) presents the impedances expressions in the Laplace domain. 



4th Latin American Conference on Bioimpedance 2021 (CLABIO 2021)
Journal of Physics: Conference Series 2008 (2021) 012019

IOP Publishing
doi:10.1088/1742-6596/2008/1/012019

3

 

 

 

 

 

 

𝑍𝐿𝑎𝑝𝑖𝑐𝑞𝑢𝑒(𝑠) = 𝑅𝑖 +
𝑅𝑑

1+𝑠⋅𝑅𝑑𝐶𝑑

𝑍𝐷𝑒𝑏𝑦𝑒(𝑠) =
1

𝑠⋅𝐶𝑖
+

𝑅𝑑

1+𝑠⋅𝑅𝑑𝐶𝑑

     (2) 

In general, the Debye model is used for describing interface-polarization phenomena, typically 

explained by the Maxwell-Wagner model [9], where at least one of the interfaces has no DC 

conductivity. 

The Cole model extends the Lapicque model and cannot be described in polynomial terms of 

integer exponents [14]. Its application to electrical impedances renders equation (3), showing its 

expression in the Laplace domain. 

𝑍𝐶𝐶(𝑠) = 𝑅∞ +
𝑅Δ

1+𝑠𝛼⋅𝑅Δ𝐶
      (3) 

The time/frequency modeling of Cole impedances leads to the use of fractional derivatives in time.  

Fractional derivatives are used to evaluate the regularized values of finite-part integrals; thus, they can 

be immediately used for the numerical evaluation of fractional-order Laplace functions. In 1903 and 

1904, Mittag-Leffler presented the basis for the analytical development of the (later) called Mittag-

Leffler's function, used to calculate the inverse Laplace-transform of a function with fractional 

exponent in s [15–18]. 

2.3.  Step-responses in the time domain 

By applying the corresponding inverse Laplace transforms, the step-response functions in time (for 

Lapicque and Debye impedances) present the forms given by  (4) 

𝑉𝐿𝑎𝑝𝑖𝑐𝑞𝑢𝑒(𝑡) = 𝐼0 ∙ [( 𝑅𝑖 + 𝑅𝑑) − 𝑅𝑑 ∙ 𝑒−𝑡
𝜏⁄ ] ∙ 𝑢(𝑡)

𝑉𝐷𝑒𝑏𝑦𝑒(𝑡) = 𝐼0 ∙ [𝐶𝑖 ⋅ 𝑡 + 𝑅𝑑 ⋅ (1 − 𝑒−𝑡
𝜏⁄ )] ∙ 𝑢(𝑡)

     (4) 

where 𝜏 = 𝑅𝑑 ⋅ 𝐶𝑑. 

The step-response analytical expression for the Cole impedance model is obtained by performing a 

partial fractions expansion of the expression given in (5). 

𝑉𝐶𝐶(𝑠) =
𝑅∞

𝑠
+

𝑅Δ

𝑠
−

𝑅Δ⋅𝑠𝛼−1

𝑠𝛼+
1

𝑅Δ𝐶

     (5) 

Mittag-Leffler's function [15–21] describes the inverse Laplace transform of  (10) and is defined by 

equation (6). 

𝐸𝛼(𝑘𝑡𝛼) = ∑
(𝑘𝑡𝛼)𝑛

Γ(𝛼𝑛+1)
+∞
𝑛=0       (6) 

where Γ is the Gamma function (extension of the factorial function), α is the Cole exponent, and k 

is a coefficient of t as presented in equation (7).  

Thus, the time-domain step function of a Cole impedance is given by 

𝑉𝐶𝐶(𝑡) = 𝐼0 ⋅ [𝑅∞ + 𝑅Δ − 𝑅Δ𝐸𝛼 (−
𝑡𝛼

𝑅Δ𝐶
)] ⋅ 𝑢(𝑡)   (7) 

It is worth noting that in 2011, Freeborn et al. [22] proposed a pseudo-algorithm for efficient fitting 

and parameter extraction of a Mittag-Leffler's function. 

2.4.  Tomographic image reconstruction 

The image reconstruction is done using the neighboring method [2], based on the Gauss-Newton-

Raphson algorithm. The software was implemented using the Open-Source EIDORS Library [23]. 

Traditionally, the tomographic image is reconstructed for a specific frequency [2–4]. Generally, the 

phasorial amplitude of the measured voltage is used to build the input matrix for the reconstruction 

algorithm. Our approach differs from the traditional use in filling the input matrix with the voltage 

values at different times (after proper fitting to the analytical expressions from section 2.3), rendering a 

time-domain set of images, which we called Step-response Electrical Impedance Tomography (srEIT). 

2.5.  System simulations 
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For a proof-of-concept, we built two network-circuits from resistors and capacitors. The first circuit is 

an pseudo-isotropic circuit formed by Lapicque impedances of 1 kΩ resistors and 15.92 nF capacitors 

with a parallel resistance of 10 kΩ (see Figure 1). The characteristic time of each Lapicque impedance 

in this circuits is τ ≈ 14.47 µs.  
The second circuit is pseudo-anisotropic. The eight capacitors in the right upper side have been 

changed from 15.92 nF to 15.92 pF, while preserving their parallel resistance (see Figure 2). 

The measurement process consists of connecting a step current source between two points of the 

circuit while measuring the voltage in the other 14 points. This process is repeated 16 times by moving 

the connection points of the current source, according to the neighboring method. The voltages were 

extracted at four times: 0.5τ, τ, 2τ, and 100τ. The simulations were performed using LTSpice XVII. 

The simulation circuits are available in the repository [24]. 

 

 
 

Figure 1. Pseudo-isotropic circuit of 16 electrodes, simulating an inert body under 
electrical impedance tomography. The capacitors are defined in Spice to have a 

parallel resistance of 10 kΩ (not shown in the schematic). 
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Figure 2. Pseudo-anisotropic circuit of 16 electrodes, simulating an inert body under 
electrical impedance tomography. Pseudo-anisotropy is introduced by altering four 
capacitors of the pseudo-isotropic circuit of Figure 1. The capacitors are defined in 

Spice to have a parallel resistance of 10 kΩ (not shown in the schematic). 

 

3.  Results 

For each circuit, the reconstruction process is done at four different times of the time constant: 0.5τ, τ, 

2τ, and 100τ, which is steady-state for the pseudo-isotropic circuit, where (see section 2.5) τ ≈ 14.47 

µs. 

The four reconstructed images in Figure 3 show a uniform pattern of impedance distribution at all 

times, as expected from the pseudo-isotropic circuit. It is important to note that the color distribution is 

normalized per image. 

Figure 4 shows the four reconstructed images of the pseudo-anisotropic network. Again, the color 

distribution is normalized per image. The anisotropic nature of the reconstructed images follows the 

pseudo-anisotropy of the circuit itself. 

The difference between the circuits is in the capacitances' values; however, all resistances (in series 

and in parallel to each capacitor) are kept the same. Thus, in the steady state of the step response (DC) 

almost no difference in reconstructed images would be observed. 
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Figure 3. Images reconstructed from the pseudo-isotropic network at 0.5τ, τ, 2τ, and 

100τ, where τ ≈ 14.47 µs.. 
 

 
Figure 4. Images reconstructed from the pseudo-anisotropic network at 0.5τ, τ, 2τ, 

and 100τ, where τ ≈ 14.47 µs.. 
 

4.  Discussion and Conclusions 

Time-domain step-response analysis of a system (particularly a bioimpedance) presents the main 

advantage of being fast and non-time consuming when performing a broadband study. All the spectral 

information of interest is measured in a single sweep. This feature is particularly important when 

dealing with highly dynamic biological systems or for fast feedback in medical procedures, for which 

its high precision does not override the time-consumption drawback of traditional frequency-domain 

techniques.  

However, a significant drawback should be noted: the method is more sensitive to the noise 

induced by jitter and high-speed ADC quantization [25]. The effects of the noise can be overcome by 
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performing several measurements and averaging (jeopardizing the advantage of non-time consuming) 

or by fitting to known analytical functions reviewed in this paper.  

As Pliquett exposed in several works [26–28], sophisticated data processing and high-quality 

hardware design, together with experience, are fundamental to designing a time-domain system whose 

precision is as good as traditional frequency-domain systems with the clear advantage of the speed of 

measurement. Finally, the balance between the advantages and disadvantages of this technique is a 

delicate interplay between the system of interest and the application requirements. 
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