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Abstract. Bioimpedance measurements are used increasingly in health applications because 

bioelectric parameters have been associated with anatomical and physiological properties, thus 

enabling to distinguish medical conditions. For bone fracture diagnostics, nevertheless, there is 

no established non-invasive method. Ex vivo studies and In vivo bioimpedance procedures, 

both invasive and non-invasive, on mammalians long bones are associated with promising 

results. In this work, out of a total of 568 papers, we reviewd 59 articles that mention long bone 

integrity by electric properties, be it Bioimpedance Analysis, Electrical Impedance 

Spectroscopy or Electrical Impedance Tomography. The papers are described in three sections, 

“Ex vivo measurements”, “In vivo invasive measurements” and “In vivo non-invasive 

measurements”. This review allows to establish the basics to planning the development of new 

technology to detect bone fracture via bioimpedance measurements. 

1.  Introduction 

Bioimpedance is defined as impedance measurement of a biological system [1]. As impedance is the 

magnitude opposing current flow in an electrical circuit when voltage is applied to it, all parameters 

are governed by Ohm´s law [2]. Different from “resistance” which opposes direct current flow, 

“impedance” results from the application of alternating tension or current. There is thus one 

“impedance” for every frequency of the stimulating current waveform. 

Bioimpedance measurements stem from Ohm´s Law applied to the resulting signal (either voltage 

or current) in a biological system when energy is applied in the form of a stimulating signal (either 

current or voltage respectively). If the injected signal is a current, the measurement will be voltage 

potential and vice versa. Electrodes are used as interfaces between the external measuring unit and the 

biological system, both to apply and to measure the resulting magnitude. The injected signal has a 

known amplitude and frequency and the resulting amplitude and phase measurements define the 

bioimpedance in terms of “modulus” and “phase”. This can be expressed as a complex number with a 

real part known as resistance and an imaginary part for reactance. Resistance and reactance depend of 

resistivity and permittivity, respectively, and their geometrical size. Resistivity and permittivity are 

electrical properties of materials and media. In biological systems, the reactance only can be zero or 
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negative (capacitive behavior) not positive (inductive behavior). In electrical systems, this is different, 

the reactance can have capacitive or inductive behavior or zero (purely resistive) [1,3]. 

We are reviewing in the present paper three techniques as applied to bone fractures, namely 

Bioimpedance Analysis (BIA), Electrical Impedance Spectroscopy (EIS) as well as in Electrical 

Impedance Tomography (EIT). 

BIA is a method which gives one single biompedance measurement (including modulus and 

phase), since the stimulating alternating signal is a simple sine wave at a given frequency. EIS yields a 

set of bioimpedance measurements, called a “spectrum” (hence its denomination), since a set of 

signals (all of the same amplitude but at different frequencies) is successively injected. Sometimes EIS 

is described as a signal spectrum being applied since the same signal amplitude is assigned to a 

succession of either increasing or decreasing frequencies, within the spectrum “band width” [3]. In 

both BIA and EIS the measurements can be done using either bipolar, tripolar o tetrapolar electrode 

configurations, i.e. using two, three or four electrodes [1]. For EIT, the spatial resolution of the 

reconstructed images requires more electrodes or measurement points, usually chosen as a power of 

two, starting at 16 electrodes. EIT systems typically inject current at two electrodes and measure 

signals at the remaining electrodes, two by two, following one of a number of possible sequences and 

configurations [3–5]. In contrast to BIA and EIS, EIT gives a vector of bioimpedance values each 

associated with its position on a bidimensional mapping. There is a qualitative difference separating 

BIA and EIS on one side and EIT on the other since the latter is the result of intense mathematical 

calculations to “create” a slice of bioimpedance values of the body under examination. EIT is usually 

performed on mixed media volume, such as the thorax, where water and air have very different 

electrical properties. EIT estimates internal bioimpedance values from external measurements and 

reconstructs an internal image. This mathematical operation as known as “to solve an inverse 

problem” because the original electrical properties of each internal point is unknown and only the 

external consequences of its existence are measurable on the outside, i.e. on the skin of the patient. In 

much the same way the EKG is the result of skin measurements of internal electrical activity of the 

heart. The cardiologist in his/her mind reconstructs the cardiovascular function by interpreting EKG 

signals[6, 7], EIT is used to build imaging estimates of a region confined by the electrodes. Both 

human anatomical and dynamic function parameters -such as pulmonary ventilation- can be quantified 

by EIT [3]. Long bone integrity deduced from EIT is an unusual topic of research, since most of EIT 

applictions deal with chest exploration and regional ventilation. 

Since the discovery of X rays, bone fractures are diagnosed by visual interpretation of X ray 

projections on either a film (XX Century) or electronic arrays (digital radiography, XXI Century) 

[8,9]. Despite the present trend to reduce the X ray energy involved, there is always an accumulative 

effect of the ionizing radiation, which increases the statistical likeliness of cellular nucleus damage 

leading to unwanted mutations [8]. Moreover, X ray equipment is usually large and expensive, even in 

its mobile versions for Emergency Departments. To overcome these inconveniences -ionizing 

radiation, size and cost- a few research groups is considering bioimpedance to describe the result of 

trauma on bone structure. 

The present review describes bioimpedance measurements to detect long bones fractures. Research 

papers on the characterization of different tissues are not included, and neither bone growth 

electrostimulation.  

2.  Measurements Methods 

The review selected all papers written in English from 1928 to 2018 with the key words 

bioimpedance, bone, fracture, detection, spectroscopy, analysis, monitoring, electrical impedance 

tomography, bioresistivy in different combination. The databases used been the digital library of 

Ministerio de Ciencia y Tecnología de la Republica Argentina (which has access to ACM Digital 

Library, ACP Scitation, American Chemical Society, American Physics Society, Annual reviews, 

BioMed Central, IEEE Xplore Digital Library, IOP Science, JSTOR, Knovel, Lyell Collection, Nature 

Journals, SAGE Premier, SciELO, Science Magazine, Science Direct, Sistema Nacional de 
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Respositorios Digitales, SpringerLink, SpringerOpen, Wiley Online Library and Wiley Open Access) 

and Google Scholar©. The results of these searches were a total of 568 of which only 58 deal with 

mammalian long bones (femur, tibia, peroneum, humerus, radius and cubitus) AND describe some 

method or measurement of electrical properties tending ultimately to describe structural bone integrity.  

The papers are described in the following three sections, “Ex vivo measurements” reporting 30 

papers, “In vivo invasive measurements” 8 papers and “In vivo non-invasive measurements” with 14 

papers. All papers described refer to one,- or more- of the BIA, EIS or EIT methods implemented. 

2.1.  Ex vivo measurements 

Hemingway [10] and Burger et al. [11,12] are the first authors (1943 and 1961) to describe the 

electrical properties of bone tissue. Geddes and Baker later write an interdisciplinary compendium 

with both physiologists and engineers input [13]. The compendium describes several tissues, 

bioimpedance-wise, showing special interest and deeper analysis for bone tissue. Bone tissue has a 

large bioelectric variability due to its morphological diversity, evidenced by differences between long 

bones and compact bones [13]. BIA was used with fixed frequencies of 1.25 MHz and 10 MHz. 

A very important contribution was made by C. Gabriel in a series of papers which included 

conductivity and permittivity of biological tissues of several species (human, bovine, sheep, porcine, 

among others) using EIS in three different electrode configurations [14–16]. Bioimpedance is given at 

different frequencies and measured with different electronic equipment: from 10 Hz to 10MHz with 

HP4182A, from 300kHz to 3GHz with HP8720 and from 130 MHz to 20 GHz with HP8753. The 

same author had previously developed compensation models to reduce measurement errors due to 

coaxial cables, and published calibration curves [17]. 

Bone structure anisotropy was first addressed when bioimpedance was measured in different 

directions (axial, radial and longitudinal) of long bones [18–21]. Mercato et al. [18] measured bone 

samples applying 500 mV to bipolar electrodes at three frequencies: 100 Hz, 10k Hz and 1 MHz, 

using an LCR Meter (HP4192A). Casas and Sevostianov [19] perform a tetrapolar measurements with 

an HP4338B. Saha et al. [20,21] report bipolar measurements in three directions taken with an LCR 

meter (HP4275A) at frequencies of 10 kHz, 100 kHz and 1 MHz. Another set of measurements was 

limited to axial and longitudinal directions at 120 Hz, 1 kHz, 20 kHz, 40 kHz, 200 kHz, 400 kHz, 2 

MHz, 4 MHz and 10 MHz. These results are shown as EIS in Figure 1. 

 

Figure 1. Electrical Impedance Spectroscopy. A. Average resistivity for the axial direction as a 

function of frequency. B. Average specific capacitance for the axial direction as a function of 

frequency [21]. 

Among electro-stimulation reports, there is an interest in biompedance estimations as a means to 

distinguish osteogenesis stages [22–27]. These papers give BIA and EIS experimental measurements, 

using function generators, ohmmeters and frequency counters. Since there are no bioimpedance 

figures for the same bone, intact and broken, these papers are not included in the present review.  
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Some authors [28–32] have studied the mechanical properties of the bone, specifically its integrity 

and porosity. Macromolecular analysis describes the correlation of bone electrical properties with 

protein structure [33]. This was done using strain gauges and spectroscopy to highlight deformation. 

Since the measurements are made „ex-vivo‟, bones are exposed to external pollution, some papers 

[23,34,35] have addressed measurement inaccuracies secondary to ambient conditions. 

Electrical properties of bones (conductivity and permittivity) have been estimated to model them 

with a passive element circuit [36]. For safety reasons [37], measurement only above 20 kHz are taken 

(20 kHz, 50 kHz and 100 kHz) with an impedance analyzer (Agilent 4294A). 

In buco-maxilo-facial surgery, ex-vivo bioimpedance measurements help to verify the correct 

osteo-integration of implants. EIS measurements are taken on two metallic implants into the bone [38] 

in the range of 10 Hz to 65 kHz with an impedance analyzer (Solartron 1250) and an electrochemical 

interface (Solartron 1286). For this application the injected signal is a pure sinusoid of either 10 mV or 

100 mV. 

Despite the fact that the papers described so far include elements that can be used to distinguish 

bone lesions, only one author [39] gives ex vivo figures of the same bone, intact and fractured [39]. A 

current of 400μA at 50kHz is injected in a buffalo tibia using two Ag/AgCl electrodes affixed on the 

bone surface to measure three conditions: : intact, semi-fractured and fractured. There are differences 

between the three states, as recorded by a BioPAC system. Figure 2 shows the bone bioimpedance 

variations as it is partially, then completely broken. 

 

Figure 2. Buffalo tibial bioimpedance from intact to broken condition. From 334.1 

ohm for intact, Z increases to 334.7 for fractured bone. After Khan et al.[39]. 

Lin et al. [40,41] published cadaveric bone electrical properties before fracture and during the 

reduction process [40,41]. Every phase of healing is measured by EIS in bipolar mode with embedded 

electrodes and Keysight Technologies E4980AL-100 Precision LCR device – Sinus tension of 100 

mV at frequencies of 20 Hz to 1 MHz. 

2.2.  In vivo measurements 

2.2.1.  Animal In-vivo Measurements. In vivo measurements of bone lesions in animals are carried out 

after fracturing it under controlled conditions. The electrical parameters are then monitored in parallel 

with X ray imaging. Both the bone lesion and invasive electrode positioning are done under 

anaesthesia.  

Most papers reporting in-vivo procedures include the electrical stimulation to foster bone 

morphogenesis [42–45]. It was not until 1982 that an in vivo paper reports bone electrical stimulation 

to record its bioimpedance [46]. Rinaldi and Goodrich verify with five embedded femur electrodes in 

rabbits what had been published until then. Figure 3 shows electrode positioning and bioimpedance 

measurement layout. Frequency was 20 Hz to 7000 Hz and applied voltage 0.1 volts to 1.2 volts with 
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General Radio Oscillator model 1316 (variable voltage), Keithley 168 Auto-ranging digital multimeter 

and a Dynascan electronic multimeter Model 290. 

Yoshida et al. [47] publish BIA at constant frequency (2.0 ± 0.4 Hz) and current (30 ± 6 μA) of 

rabbit bones surgically implanted external nails. Their aim was to record bioimpedance during the 

healing process after osteotomy. Different bioimpedance values were found for every bone union 

phase. 

 

Figure 3. A. Five bone-electrodes affixed onto rabbit femur to measure cortical 

bioimpedance. B. Circuit diagram with a “current source” to estimate bioimpedance 

modulus in vivo rabbits. After Rinaldi et al.[46]. 

2.2.2.  Invasive Measurements in Humans. Since long bone fracture reduction is treated with 

externally exposed nails, some authors have published BIA as healing monitoring evidence [48,49]. 

There is no intention here to detect a fracture, but rather a quantification of a biological process. The 

nails used for external fixation, are used as “invasive electrodes”. 

With such settings, Gupta [49] and Kumaravel [48] suggest that bioimpedance measurements could 

replace X ray images to determine when the bone healing ends, thus avoiding the use of ionizing 

radiation.  They also speculate on the usefulness of BIA in case of bone union failures or delays. 

Frequency of 100 Hz was used along with a LCR-Q meter [49] while Kuramarel [48] used direct 

current (DC) with 0.1 to 1.0 volts variable tension, using a Scientech® Model ST4073 voltage 

generator and an ammeter from EIC Meters Private Limited, Bangalore - 560062, India. 

It should be noted in passing that neither research group apparently took care of patient safety, as 

tensions (not currents) were applied to the electrodes and because the frequency used fell within risky 

ranges according to standards [37]. 

2.2.3.  Non Invasive Measurements in Humans. In the 1980´s two British groups, one in Sheffield 

(England) the other in Aberdeen (Scotland) publish Electrical Impedance Tomography (EIT) 

applications for extremities [50,51]. Within two years, the Sheffield data collection [52] and the 

Aberdeen Impedance Imaging system [53] are able to produce transversal 2D images from EIT data 

collected around the skin. 

Aberdeen University publishes EIT applications to produce diagnostics and monitoring evidence of 

human extremities bone lesions: femur [54], humerus [55,56], tibia [54,55] and peroneum [54]. 

Volunteers offered both intact and fractured extremities at the bones mentioned. In all cases did the 

authors use their original equipment and methods [53] with 1 mA and 10 kHz current successively 
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injected in two out of sixteen skin electrodes to measure voltage from the remaining electrode adjacent 

pairs.  

The Kulkarni group (Aberdeen, Scotland) is generally considered in EIT descriptions [4] as well as 

reviews [57–59] as the developer of bone fracture applications. 

As a test for a new multifrequency broadband equipment [60], an EIT reconstructed human upper 

extremity section was published [61], but with no apparent clinical consequences in later available 

literature. 

Ohmine et al. [62] perform skin electrode measurements on human arms to validate a model. By 

doing so, they obtain the conductivity of bone as well as other living tissues. There is no attempt here 

to characterize bone fracture, but it is interesting to mention the fact that they apply a step current to 

evaluate bioimpedance spectroscopy. Signal analysis theory is employed to obtain the same result as 

when using classical EIS frequency scanning, but with only one signal [63]. 

Steihaug et al. [64] use traditional BIA for hip fracture and hip replacement surgery characterization 

with 50 kHz current at 425 μA and tetrapolar array (RJL quantum systems III, RJL systems, USA) and 

a very similar 50 kHz current at 400 μA (Body impedance analyzer BIA 101 ASE, Akern Srl, Italy). 

Measurements are taken on affected side as well as contralateral to show differences in fractured and 

recently operated patients. 

3.  Discussion 

The present revision contains a corpus of knowledge to base upon the development of a method to 

detect bone fractures using bioimpedance. All ex vivo papers specify the conditions (pH, direction of 

measurement, temperature, among others) in which the bioimpedance differences were recorded. This 

ensures reproducibility. The bioimpedance difference is associated with bone structure discontinuity 

provided there is a standard to compare it to, e.g. contralateral or further along the bone. The 

usefulness of the available information encompasses EIT, EIS and BIA alike. 

Surprisingly, EIT, and not EIS nor BIA, is the only modality to have been used to attempt to 

characterize bone lesions. But deciding on whether a long bone is fractured based on low resolution 

sections is difficult and this is why the result has been poor due to date in terms of clinical use. New 

mathematical tools available after a quarter of a century [65] and increased computational power are 

available to allow big steps to be taken in the direction of giving reliable EIT images. 

Electrical safety has not always been included in the design of experimental set-ups. This aspect 

must be addressed if bioimpedance is to be used as some substitute for X ray, i.e. broadly and 

commonly. Accepted safety standards [37] suggest to use frequencies above 10 kHz and to apply 

controlled current only, since prevalent voltage on unknown impedances may result in such currents 

that cause harm to patients. 

The basics of bioimpedance extremities measurements have been described here. The next step is 

to address the clinical need for an easy, non-ionizing, low cost and portable instrument to detect bone 

fractures wherever pre hospital care is called to act: e.g. at a car accident, in the snow or on a boat at 

sea. Careful planning of experiments based on the present revision should help in the direction of a 

safe bone fracture bioimpedance detector. 

In the Table 1 shows a practical information resume of the present work. 
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Table 1. Bone integrity by Electrical Impedance Measurements 

Authors Aim Method Signal Results Equipment (Model) 

Hemingway 

et al.[10] 

Know the distribution of 

applied currents over 

human body for the study 

of diathermy effects. 

BIA 1 MHz High resistance at low 

frequency is due to 

superficial fat. 

Wheatstone bridge 

& conductivity cell 

(Own 

developments) 

Gabriel et 

al. [14–16] 

Characterize dielectric 

properties of different 

biological tissues. 

EIS 10 Hz -   

10 MHz 

Compendium of 

dielectric properties of 

animal & human tissues. 

Impedance 

Analyzer 

(HP4182A) 

Mercato et 

al.[18] 

Establish a relationship 

between the high values 

of low-frequency 

permittivity, bone tissue 

BIA 10 Hz,    

10 kHz & 

1 MHz 

 Correlation  between the 

low-frequency electric 

conductivity and relative 

permittivity. 

Impedance 

Analyzer 

(HP4192A) 

Saha et al. 
[20,21] 

Electrical and dielectric 

properties of wet human 

cancellous bone from 

distal tibiae  

EIS 10 kHz - 

10MHz 

The variations in the 

electrical properties for 

longitudina and 

transverse directions . 

Miliohm Meter 

(HP4275A) 

Arpaia et 

al.[38] 

EIS measurements the 

characterization of the 

interface between the 

bone and prosthesis. 

EIA 10 Hz - 65 

kHz (10 to 

100 mV) 

 capability to detect t a 

satisfying connective 

tissue,  and its thickness 

Impedance 

Analyzer 

(Solartron 1250 &  

Solartron 1286) 

Khan et 

al.[39] 

Ipedance measurement to 

detect bone fracture and 

healing  monitoring  

BIA 50 kHz 

(400 μA) 

Electrical impedance of a 

normal bone is less than 

that of fractured bone 

Datalogger 

(BIOPAC system 

w MP 45 ADunit) 

Lin et al. 
[40,41] 

EIS to distinguishtissues 

involved in bone fracture 

repair  

EIS 20 Hz -     

1 MHz    

(100 mV) 

EIS has the feasibility for 

detecting fracture callus 

composition, h 

Precision LCR 

device (Keysight 

E4980AL) 

Rinaldi and 

Goodrich 

[46] 

Measure the conduction 

properties of rabbit femur 

with five-point method 

EIS 20 Hz - 7 

kHz (0.1 

to 1.2 V) 

Present bioimpedance 

values of different parts 

of rabbits femur. 

Oscillator 

(GR1316) & 

Multimeters 

(Keithley 168 & 

Dynasmac 290) 

Yoshida et 

al. [47] 

Bone electrical 

impedance using external 

fixation pins as 

electrodes,  

BIA 2 Hz (30 

μA) 

The bone remodelling 

resulted in an increase of 

Z values post healing. 

AC electrical stim 

BS-1000) Biol. 

Amp. & Oscil 

(Kenw DCS8300) 

Gupta et al. 

[49] 

New tool to diagnose  

non-union of bones. 

BIA 100 Hz Electrical properties as 

marker for fracture. 

LCR-Q Meter (No 

information) 

Kumarevel 

et al. [48] 

Can electrical resistance 

across the fracture be 

used as a tool to study 

fracture healing process ? 

BIA DC (0.1 to 

1.0 V) 

Resistance versus day 

graph to predict healing. 

V Gen. (Scientech 

ST4073) & 

Ammeter (EIC 

Meters 560062) 

Kulkarni et 

al. [57–59] 

Generate a new method 

to clinical monitoring of 

bone fracture healing 

process. 

EIT 10 kHz    

(1 mA) 

Reconstruct the image of 

a cross section of 

different human limbs. 

Aberdeen 

Impedance 

Imaging System 

Own development 

Brown et al. 

[50] 

New method for clinical 

monitoring  

EIT 50 kHz 

(1 mA) 

Image of a cross section 

of different human body 

parts 

Sheffield Mark 1 

(Own 

development) 
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Riu et al. 

[60,61] 

Multifrequency 

measurements in EIT  

EIT 64 kHz & 

125 KHz 

Reconstruct the image of 

a cross section of a 

human thigh. 

(Own 

development) 

Steihaug et 

al. [64] 

BIA measurements of hip 

fracture & repair 

BIA 50 kHz 

(425 μA) 

& 50 kHz 

(400 μA) 

Resistance was lower on 

the side of the fractured h 

Bioimpedance 

Analyzer (RJL & 

Body Impedance 

Anal BIA 101ASE 
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