Ingenieros uruguayos diseñan equipos para tratar ictericia en bebés

La Facultad de Ingeniería y Medicina, dieron con el descubrimiento. Luego de contactarse con algunos médicos locales, los técnicos comprobaron que habían encontrado una solución ideal para el tratamiento de la ictericia de neonato. De inmediato, Failache solicitó la patente local al Ministerio de Industria con la intención de proteger el hallazgo.

La ictericia —coloración amarillenta de la piel y del globo ocular— es una afeción común que se presenta en más de la mitad de los recién nacidos y es ocasionalmente por la alta concentración en sangre de bilirrubina, un pigmento producto de la descomposición normal de los glóbulos rojos y que el organismo normalmente degrada a través del hígado.

Sin embargo, habitualmente los bebés nacen con una inmadurez hepática que les impide procesar la bilirrubina. Mediante la exposición del niño a una dosis intensa de luz (fototerapia) se consigue degradar ese pigmento.

El aparato construido por los ingenieros uruguayos resulta un revolucionario en relación a las tecnologías utilizadas hasta el momento para el tratamiento de la ictericia neonatal, ya que posee una mayor vida útil, no requiere gastos de mantenimiento y alcanza una eficacia significativamente superior a otras conocidas.

- **Chips de color azul.** Del tamaño de una caja de zapatos, el Biiled funciona a partir de 196 pequeños chips de silicio o LED (sígllo en inglés de Light Emitting Diode). A diferencia de los emisores de luz térmicos como las lámparas con filamento o las halógenas, los LEDs son una fuente de luz muy eficaz que desperdicia mucho poca energía térmica y tiene un color muy bien definido que puede variar del ultravioleta hasta el infrarrojo.

Failache informó a BUSQUEDA que el uso de bioluminescencia en el tratamiento de la ictericia es una sofisticación, aventuró Failache. Agregó que a partir de la instalación de estos cinco nuevos equipos en las instituciones de Salud Pública, la Facultad de Ingeniería pide como contrapartida que se realice en cada uno de esos centros una investigación sobre la eficiencia del equipo.

Buen rendimiento a bajo costo. El ingeniero destacó que la gran ventaja del aparato nacional es que está libre de mantenimiento y que además tiene una vida útil media de unos cinco años.

Los equipos estándarizados, en cambio, requieren un cuidado frecuente dado que los materiales son más delicados.

En la actualidad se utilizan tres tipos de aparatos para el tratamiento de fototerapia. El primero se basa en el uso de entre 5 y 10 tubos fluorescentes, por lo que se necesita una gran estructura sobre la cuna del bebé. Estos equipos tienen una baja intensidad de tratamiento y una vida útil muy corta, explicó Failache.

La otra tecnología utilizada consiste en una almohadilla de fibra óptica que se coloca pegada al cuerpo del niño y que emite una luz muy intensa. Este equipo es de alta fragilidad y también posee baja eficacia.

Un tercer equipo construido con fuentes de lámparas halógenas generadoras de mucho calor, por lo que deben situarse lejos del recién nacido.

En cambio, estos equipos, que se caracterizan por su bajo costo, son los que se comercializan.

En cuanto a la patente universitaria, Failache explicó que fue tramitada en el 2003 y todavía está a estudio en el Ministerio de Industria. Comentó que, finalmente, ha sido considerado una idea de buena gana.
Ciencia y Ambiente en pocas líneas

El galardón será entregado a una persona de reconocido prestigio profesional, que haya contribuido de manera significativa al conocimiento científico universal, al avance tecnológico o al desarrollo de las ciencias sociales, que se haya distinguido por el impacto internacional de sus trabajos, por haber formado escuela, por sus aportes a la formación de recursos humanos, y porque su actuación se haya realizado, fundamentalmente, en uno o más países de la región incluidos en la convocatoria.

El premio consiste en una medalla, una diploma y una suma de dinero equivalente a 50 000 pesos mexicanos (aproximadamente 50 000 dólares). El plazo para la presentación de candidaturas vence el 26 de octubre próximo. Por mayor información ingresar al sitio http://www.ccs.gob.mx.

- Reciclaje obligatorio. El 23 de julio último comenzó a regir en Uruguay la Ley de Envases, por la cual se establece que todos los envases y envolturas no retornables con el fin de evitar su inclusión como parte de los residuos sólidos provenientes de los hogares.

Los propietarios o representantes de las marcas serán responsables directos del diseño, operación y mantenimiento de los planes de gestión de residuos de envases, que deberán ser aprobados previamente por la Dirección Nacional de Medio Ambiente. La devolución, recolección, transporte, depósito transitorio y los mecanismos de control serán algunos de los puntos a definir en estos planes de gestión.

La ley de uso de envases no retornables (N° 17 849) fue aprobada en noviembre de 2004. Al final del siguiente año, el Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente (MOViTMA) inició un proceso participativo para la elaboración de una propuesta de reglamentación de la norma, formando un grupo de trabajo integrado por industriales, importadores, empresas recicladoras, ONGs, clasificadores y representantes del gobierno.

La norma incluye todos los envases existentes en el mercado, como los utilizados para los líquidos de consumo humano, para la cocción de alimentos, desinfección y limpieza del hogar, además de los artículos de perfumería, cosmética y tocador.

Fallache informó a Búsqueda que el uso de estos dispositivos para la atención terapéutica de la ictericia es relativamente nuevo y fue posible gracias al descubrimiento de una banda espectral de los azules. "El tratamiento de la ictericia necesita una longitud de onda muy específica que se encuentre en las bandas de los azules. En 2002 los ingenieros trabajaron sobre una longitud de onda roja para el tratamiento de un tipo de cáncer de piel. Luego de varias pruebas sin éxito, los técnicos decidieron sustituir el láser rojo por el LED azul, lo que significó el primer esbozo de la nueva fuente de luz. Al año siguiente, el trió trabajó en la construcción del primer prototipo. En el camino tuvieron que superar todos los desafíos, incluyendo ganar una fuente de alta intensidad, indispensable para el tratamiento de la ictericia. Los ingenieros diseñaron mediante un sistema óptico una forma de recolectar la luz emitida por los casi 200 chips. Luego, se colocó en un tubo luminoso, en el cual se potenciaba la emisión en una zona resplandeciente.

Luego de un año de funcionamiento del primer equipo instalado en el Hospital Pereira Rossell, los investigadores comenzaron a recibir más pedidos. Como en ese momento ninguna modelo final de BillLED comenzó a comercializarse tanto a nivel local como regional. El ingeniero reconoció que si bien existen aparatos similares en América Latina, el equipamiento autóctono representa "una buena competencia que es más pequeño y tiene una intensidad de tratamiento mayor que el de otros países.

- Tecnología de avanzada. La intensidad luminosa y la homogeneidad de iluminación convirtieron al BillLED en una exitosa herramienta para el tratamiento de la ictericia. Fallache comentó que en Uruguay todavía se recurre a la atención de este trastorno a fuentes de luz halógenas o a tubos comerciales de uso estándar en iluminación, lo cual es un inconveniente para el recién nacido.

Uno de los mayores beneficios del equipo diseñado para estos uruguayos es que gracias a la distribución circular de la luz se pueden irradiar zonas sensibles del organismo del recién nacido, como por ejemplo el pelo. El uso del nuevo equipo permite reducir el tratamiento a 12 o 24 horas en lugar de las 76 horas o más requeridas con equipos tradicionales.

En muchos casos, cuando la fototerapia no alcanza para bajarn los niveles de bilirrubina es necesario recurrir a una transfusión de sangre. "Mis esperanzas que se logre traer casos relativamente agudos con este equipo y llegar a evitar la transfusión, sin embargo, es de alta fragilidad y tiene una patente local.

Facultad de Ingeniería abre puertas al sector productivo

La Fundación Julio Ricaldoni, de la Facultad de Ingeniería de la Universidad de la República, realizó el martes último, el lanzamiento oficial del proyecto "Vinculación en Ingeniería", en el marco de la donación de cinco equipos BillLED para el tratamiento por fototerapia de la ictericia neonatal.

Se trata de un plan de invierno que tiene como objetivo potenciar la relación entre el centro de estudios y el sector productivo de bienes y servicios.

El proyecto, aprobado a fines del 2005, cuenta con el financiamiento de la Dirección de Innovación, Ciencia y Tecnología para el Desarrollo (DICYT) del Ministerio de Educación y Cultura (MEC) y con fondos de la propia fundación.

El monto total del proyecto para el primer año de funcionamiento es de $86 000 dólares, de los cuales 20% es costeado por la Fundación Julio Ricaldoni. La inversión es de carácter no reembolsable. La finalidad es delear aportes a las empresas y sectores productivos para que los investigadores trabajen centrados en su especialidad y a la vez conviertan a las empresas de que se pueden hacer muchas cosas a partir del conocimiento generado en la Facultad de Ingeniería": informó a Búsqueda el ingeniero Gerardo Agresta, de la Fundación Ricaldoni. El proyecto es el que fue desarrollado, en su mayor parte, por el alumnado de este centro de estudios y se centra en el diseño y fabricación de equipo ultravioleta para el tratamiento de la ictericia neonatal.

La idea es que el investigador no tenga que salir con sus equipos bajado el brazo a tocarles timbre a los empresarios o reaciales una patente, como fue el caso de "frecado que hacían", explicó el ingeniero Horacio Fallache, uno de los inventores de los equipos BillLED.

Agresta, en tanto, comentó que hasta el momento se han abocado a averiguar qué necesitan las empresas y qué están comprando en el exterior. Para ello la fundación se puso en contacto con la Cámara Uruguaya de Tecnologías de la Información (CUTI) y con la Cámara de Industrias del Uruguay (CIU).

Su oferta está centrada en las siguientes áreas temáticas: gestión de software, tecnologías de la información, enginería eléctrica, eficiencia energética, gestión de calidad e ingeniería química.